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Abstract

Relationships between diverse thermodynamic quantities appropriate to weakly compressible

turbulence are derived. It is shown that for turbulence of a �nite turbulent Mach number

there is a �nite e�ect of compressibility. A methodology for generating initial conditions

for the 
uctuating pressure, density and dilatational velocity is given which is consistent

with �nite Mach number e�ects. Use of these initial conditions gives rise to a smooth

development of the 
ow, in contrast to cases in which these �elds are speci�ed arbitrarily or

set to zero. Comparisons of the e�ect of di�erent types of initial conditions are made using

direct numerical simulation of decaying isotropic turbulence.
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1. Introduction

Compressible shear layers are encountered in many practical applications ranging from su-

personic ejectors for mixing and entrainment in gas turbines to scramjet combustion. Such


ows, important in mixing enhancement and noise reduction, are modi�ed using di�erent

nozzle shapes or strategies such as multiple jets, coaxial jets, and countercurrent mixing

layers. Compressible mixing layers, for a certain class of initial conditions, have a growth

rate substantially lower than their incompressible counterparts. Compressibility e�ects also

contribute to substantial reductions in turbulence intensity levels and the turbulent shear

stress anisotropy while increasing levels of anisotropy of the normal stresses. Additional

details regarding the e�ects of compressibility can be found in Bradshaw [1], Lele [2], Spina

et al. [3], and Gutmark et al. [4].

Many of these 
ows are part of a class that have a small bulk dilatation and in which

turbulence gradients are more important than mean pressure gradients. Such 
ows typically

have a small turbulent Mach number squared, M2

t � 1, where Mt = ~u=c, ~u is a turbulent

velocity scale and c is the mean speed of sound. This re
ects about the weakly compressible

nature of the turbulence | the mean 
ow itself may be highly supersonic. An analytical

development of the covariance with the 
uctuating dilatation suitable for such a class of


ows has been given in Ristorcelli [5]. This note explores the implications of that analysis

in the context of the initial conditions for DNS or turbulence model calculations. It is

shown that as a consequence of a �nite turbulent Mach number there are �nite non-zero

density, temperature and dilatational 
uctuations. Moreover these 
uctuations are, to lowest

order, speci�ed by the incompressible �eld. These results are relevant to initial conditions

on thermodynamic quantities employed in DNS of compressible turbulence that are started

using incompressible 
uctuating velocity �elds. A potential consequence of the present results

is a reduction in the amount of computational e�ort spent adjusting to transients associated

with the relaxation from arbitrary initial conditions. Also, for 
ows such as decaying isotropic

turbulence which are highly dependent on initial conditions, the methodology presented here

provides a more natural type of initial conditions than others which have been previously

considered.

2. Analysis

Ristorcelli [5] has conducted a small Mach number expansion of the compressible Navier-

Stokes equations. Some of those results, as they are relevant to the present subject, are

now brie
y sketched. The problem of compressible turbulence can be viewed as a singular
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perturbation. The inner problem is related to the acoustic source problem with time and

length scales based on the turbulence time and length scales, `=~u and `. Here ~u and ` are

a 
uctuating velocity scale and a turbulence integral length scale. The outer problem is

the acoustic propagation problem, which in the low M2

t limit has time and length scales

�=c = `=~u and � = `=Mt. The inner expansion is relevant to the compressible turbulence

modeling problem for compact 
ows [5].

The velocity �eld is decomposed according to ui = vi + �2wi + ::: thus d = ui;i= �2wi;i+:::,

where the small parameter is �2 = 
M2

t where Mt = ~u=c. The thermodynamic variables are

decomposed according to a perturbation about a mean state, (P; ��; T ), thus p� = P (1 + p);

�� = ��(1 + �) and T � = T (1 + �). Then ansatzs of the form p = �2 [p1 + �2p2 + :::] are used.

In the context of turbulence models, the following de�nition of the 
uctuating Mach number

is used by M2

t = 2

3
k=c2 where k = 1=2 < ujuj >. To lowest order

vi;t + vpvi;p + p1;i = 0 (1)

vi;i = 0 (2)

p1;jj = � (vivj);ij (3)

�1 =
1



p1 (4)

�1 =

 � 1



p1: (5)

In light of the homogeneous shear 
ow simulations of Blaisdell et al. [6, 7] (the 
uctuations

were seen to follow a polytropic gas law with coe�cient close to the adiabatic value), the

adiabatic case is treated. The dimensional form of the linearized adiabatic equation of state

is

�0

��
=

p0


P
=

1


 � 1

�0

T
(6)

accounting for the last two equations in the zeroth-order expansion above. The zeroth-order

problem is the incompressible problem. The 
uctuating pressure is not an independent

variable but is set by the vortical velocity 
uctuations and which also produces the density

and temperature 
uctuations. On the inner scales the incompressible pressure 
uctuations

dominate the pressure �eld. This pressure is called by acousticians the \pseudo-pressure"

in contradistinction to the propagating pressure associated with the sound �eld. The next

order expansion for the continuity equation produces a more complex diagnostic relation for

the 
uctuating dilatation,

�
d = p1;t+vkp1;k : (7)
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The relationships between the density, temperature and dilatation as well as the velocity

�eld associated with the dilatation to be derived presently will be called \pseudo-sound"

relationships. The dimensional equivalents of the above relationships, using the facts that

�1 = �0=��, �1 = �0=T , p1 = p0=P are

�0 =
1

c2
p0 (8)

�0 =

 � 1


R��
p0 (9)

�
Pd0 = p0;t+vkp
0;k (10)

where p0 is the incompressible pressure 
uctuation. In the context of a calculation two

di�erent nondimensionalizations are possible. In either case the pressure 
uctuations will

scale with ��~u2. For Case 1 the density and temperature 
uctuations are scaled with the

turbulence 
uctuations, ��~u2=c2 and ~u2=cp respectively, and one obtains � = p and � = p.

For Case 2 the density and temperature 
uctuations are scaled with the mean temperature,

T , and density, ��, and one obtains � = M2

t p and � = (
 � 1)M2

t p. In either scaling

the 
uctuating dilatation is obtained from �d = M2

t (p;t+vkp;k ). In both cases it is clear

that for �nite non-zero turbulent Mach number there are �nite non zero 
uctuations of

density, temperature, dilatation and pressure and there are speci�c relationships between

these quantities.

Obtaining an initial condition for the compressible portion of the velocity �eld, wi, which is

consistent with the relation (7) is somewhat involved. The 
uctuating pressure p1 needed in

(7) is obtained from the Poisson equation (3), and its time derivative can be found by taking

the time derivative of (3) and then substituting for the time derivative of the velocity from

(1). This give a Poisson equation for p1;t,

(p1;t ) ;jj = 2 [(vkvi;k +p1;i )vj] ;ij (11)

Solving the two Poisson equations (3) and (11), the dilatation is then found from (7). For

homogeneous turbulence the dilatational velocity can be found from the dilatation by working

in Fourier wave space. Since the dilatational velocity is irrotational the Fourier coe�cients

of the velocity are aligned with the wavevector, ~k, and they can be found from

bwj = �i
kj

k2
bd (12)

The dilatational velocity wi is then combined with the solenoidal velocity vi to obtain the

full velocity �eld.
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3. Simulations and Results

In order to determine the e�ectiveness of the new initial condition method, direct numerical

simulations of decaying isotropic turbulence are done with three di�erent types of initial

conditions. For all three types of initial conditions a solenoidal velocity �eld is speci�ed with

an initial three-dimensional spectrum given by

E(k) = Ak4 exp(�2k2=k2p) (13)

and random phases for the Fourier coe�cients. The constant A determines the amplitude of

the velocity 
uctuations and is set to obtain a speci�c turbulent Mach number,Mt. The peak

in the spectrum is given by the wavenumber kp which is set to 12 for all of the simulations

presented here. The �rst method, IC1, speci�es zero density and pressure 
uctuations. The

velocity �eld is purely solenoidal so that the dilatation is zero. The second method, IC2, has

zero density 
uctuations, but the 
uctuating pressure �eld is found by solving the Poisson

equation (3). The velocity �eld is again purely solenoidal. The third method, IC3, uses the

methodology developed here. The 
uctuating pressure �eld is found by solving the Poisson

equation (3). The density 
uctuations are related to the pressure through (4). The dilatation

is nonzero and is found from (7). Lastly, the dilatation is used to �nd the dilatational velocity

from (12).

Details about the simulation method can be found in Blaisdell et al. [6]. Simulations were

performed with initial turbulent Mach numbers Mt = 0:231, 0:115 and 0:058. The initial

turbulent Reynolds number ReT = �q4="� = 200 where q2 = �uiui=� and " is the dissipation

rate of turbulent kinetic energy per unit volume.

For the present brief communication one �gure, using data from the Mt = 0:231 runs, has

been chosen to illustrate the analysis. Figure 1 shows the development of the variance of the

dilatation, dd. It is clear from the �gure that there are sizable time boundary layers near the

origin for the �rst two methods as the 
ow seeks to adjust to inconsistent initial conditions.

This is not the case for the pseudo-sound initial conditions. Also interesting to note is the

fact that the variance of the dilatation for IC1 is one order of magnitude larger than IC3. In

general, at lower Mt this di�erence is more pronounced and at Mt = 0:058 the di�erence is

two orders of magnitude. This excess dilatation is associated with the initial condition and

not the dilation due to the evolving compressible velocity �eld. These results are consistent

with the physics of the near �eld evolution as developed in [5].
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An intuitive argument can be given to explain the behavior seen in Fig. 1. One might spec-

ulate that there is a wave �eld generated by the inconsistency between the pressure, density,

temperature, and dilatational �elds whose decay rate is far slower than the turbulence decay.

This gives rise to a background acoustic radiation that lasts the course of the simulation.

For IC1 the 
uctuating pressure �eld is set to zero. This can be viewed as a combination

of the incompressible pressure satisfying (3) plus an acoustic pressure �eld which exactly

cancels the incompressible pressure �eld. As time evolves the two pressure �elds become

decorrelated, giving rise to large acoustic pressure and dilatation 
uctuations. For IC2 the

pressure �eld is correct; however, there is no dilatation �eld. Again this can be viewed as

a combination of the dilatation found from (7) plus an acoustic dilatation �eld that exactly

cancels this. As the 
ow evolves away from the initial conditions, the two dilatation �elds

become decorrelated so that one is left with the correct dilatation plus acoustic 
uctua-

tions of dilatation and pressure. The evolution of the pressure variance (not shown here)

corroborates this picture.

4. Conclusions

The major result of this note is that the initial conditions on the 
uctuating thermody-

namic variables of density, temperature, pressure, and dilatation should not be arbitrarily

speci�ed in the DNS of compressible turbulence. To lowest order these 
uctuations, whose

nature is connected by the underlying 
uctuating vortical turbulence �eld, are generated by

the pressure �eld associated with the divergence-free portion of the vortical motions. The

methodology for generating initial conditions presented here allows the 
ow to develop more

naturally. The signi�cance of the initial conditions may depend on the type of 
ow consid-

ered; however, one is led naturally to speculate about the nature and relevance of simulations

that start from arbitrary initial conditions.

A discussion of initial condition issues is given in Blaisdell et al. [7]. In homogeneous shear


ow the e�ects of arbitrary initial conditions are seen to dissipate by St = 6, where S is the

shear rate. In isotropic turbulence, however, the initial conditions do not fade. Blaisdell et

al. [7] has pointed out that the lack of coupling between the wave and vortical �elds in the

isotropic 
ow is a probable source of these two di�erent dependencies on initial conditions.

(This should also be understood as an additional dependence on the initial conditions other

than that already established for incompressible isotropic turbulence.)

There are surely a large number of interesting studies in which one can study the relaxation

from diverse arbitrary initial conditions. It is also possible to argue that they have practical
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value. However, the strongest argument, given the current engineering problems and the lack

of knowledge regarding the e�ects of compressibility, can be made for the initial conditions in

which the density, temperature, pressure, and dilatational �elds are related to the underlying

local turbulence �eld that is, to a large degree, the source of the 
uctuations. This seems

better than an arbitrary guess at initial conditions that may or may not have physical

relevance or meaning and may produce unrealizable results.
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Figure 1: Time history of the dilatation variance for decaying isotropic turbulence using
initial conditions IC1 ( ), IC2 ( ), and IC3 ( ).
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